[gradsusr] Problem with GrADS in reading ECMWF synoptic monthly means data

Mubashar Dogar mubashardogar at gmail.com
Mon Sep 19 09:20:33 EDT 2011


Dear Arlindo,

My data is synoptic monthly means (having average for all the days in a
month at 3, 6, 9, 12, 15, 18, 21, 00) for each month. I have one year data
only so total time steps will become 8*12=96. I followed your instruction
and write the ctl. It seems as GrADS is not looking at my edef definition
because GrADS is still changing days and not the months after 8 values. Also
I am only getting data at first 8 time steps and get undefined values for
the rest. You can see my grib file information in my previous email. Please
suggest me.  My ctl is given below:

dset ^ei_mnth_fc_sfc_1.5x1.5_19890101_19891201.grib
index ^ei_mnth_fc_sfc_1.5x1.5_19890101_19891201.grib.idx
undef 9.999E+20
title ei_mnth_fc_sfc_1.5x1.5_19890101_19891201.grib
*  produced by grib2ctl v0.9.12.5p46
dtype grib 255
options yrev
ydef 121 linear -90.000000 1.5
xdef 240 linear 0.000000 1.500000
tdef 96 linear 03Z01jan1989 3hr
edef 12 names
198901 198902 198903 198904 198905 198906 198907 198908 198909 198910 198911
198912
zdef 1 linear 1 1
vars 1
TPsfc  0 228,1,0  ** surface Total precipitation m
ENDVARS

Regards,

Mubashar

>
>
> ****************************************************************************************
> Today's Topics:
>
>   1. Re: Problem with GrADS in reading ECMWF synoptic monthly
>      means data (Arlindo da Silva)
>   2. Re: Problem with GrADS in reading ECMWF synoptic monthly
>      means data (Mubashar Dogar)
>
>
> ----------------------------------------------------------------------
>
> Message: 1
> Date: Sun, 18 Sep 2011 16:18:04 -0400
> From: Arlindo da Silva <dasilva at alum.mit.edu>
> Subject: Re: [gradsusr] Problem with GrADS in reading ECMWF synoptic
>        monthly means data
> To: GrADS Users Forum <gradsusr at gradsusr.org>
> Message-ID:
>        <CALz7xZdWvCo29hfGE=Pyk2G7bs2=o37XKgwGqdzCv4of-+Edrw at mail.gmail.com
> >
> Content-Type: text/plain; charset="iso-8859-1"
>
> On Sun, Sep 18, 2011 at 2:39 PM, Mubashar Dogar <mubashardogar at gmail.com
> >wrote:
>
> >
> > Dear GrADS users,
> >
> > I am facing a problem with time steps of a netcdf file downloaded for
> > synoptic monthly means of ECMWF ERA-INTERIM forecast product for the year
> > 1989 (downloaded for surface total precipitation for all time steps
> > available from: http://data-portal.ecmwf.int/data/d/interim_mnth/). This
> > file is basically synoptic monthly means generated by long term average
> of
> > corresponding 3 hour in all the days of a month, giving 8 time steps in a
> > month. So instead of reading 96 values that represents to 12 months (8
> > values in each months) GrADS read all these values by considering 8 time
> > steps in a day instead in a month. I mean GrADS reads these hours in a
> daily
> > format instead of monthly. Does GrADS not deal with synoptic monthly
> means?
> > I have grib file as well for the same data, what should be time increment
> in
> > a ctl file to open the same grib file?
> >
> >
> One strategy is to use the ensemble dimension to deal with the fact that
> you
> have 2 time scales involved. For example, you you associate each month with
> the grads time dimension and each "time of the day" with the grads ensemble
> dimension. (Or you can swap these if you prefer.) This recipe discusses how
> this can be done for the MERRA monthly diurnal files.
>
>
> http://cookbooks.opengrads.org/index.php?title=Recipe-024:_Using_the_Ensemble_Dimension_with_Monthly_Mean_Diurnal_files_from_MERRA
>
>    Arlindo
>
>
>
>
>
>
>
> --
> Arlindo da Silva
> dasilva at alum.mit.edu
> -------------- next part --------------
> An HTML attachment was scrubbed...
> URL:
> http://gradsusr.org/pipermail/gradsusr/attachments/20110918/49476667/attachment-0001.html
>
> ------------------------------
>
> Message: 2
> Date: Mon, 19 Sep 2011 06:44:39 +0300
> From: Mubashar Dogar <mubashardogar at gmail.com>
> Subject: Re: [gradsusr] Problem with GrADS in reading ECMWF synoptic
>        monthly means data
> To: gradsusr at gradsusr.org
> Message-ID:
>        <CAHBht22uwemsh4cgx9z_pJ56jC-J_Xp=b3di8UXmG-0umQxQgw at mail.gmail.com
> >
> Content-Type: text/plain; charset="iso-8859-1"
>
> Dear Jennifer,
>
> *Here is the output of ncdump -c as requested. I am also giving the output
> of wgrib -h for the grib format of the same data at the end:*
>
> ncdump -c ei_mnth_fc_sfc_1.5x1.5_19890101_19891201.nc
> netcdf ei_mnth_fc_sfc_1.5x1.5_19890101_19891201 {
> dimensions:
>    longitude = 240 ;
>    latitude = 121 ;
>    time = UNLIMITED ; // (96 currently)
> variables:
>    float longitude(longitude) ;
>        longitude:units = "degrees_east" ;
>        longitude:long_name = "longitude" ;
>    float latitude(latitude) ;
>        latitude:units = "degrees_north" ;
>        latitude:long_name = "latitude" ;
>    int time(time) ;
>        time:units = "hours since 1900-01-01 00:00:0.0" ;
>        time:long_name = "time" ;
>    short tp(time, latitude, longitude) ;
>        tp:scale_factor = 4.25320233951185e-07 ;
>        tp:add_offset = 0.0139356174654106 ;
>        tp:_FillValue = -32767s ;
>        tp:missing_value = -32767s ;
>        tp:units = "m" ;
>        tp:long_name = "Total precipitation" ;
>
> // global attributes:
>        :Conventions = "CF-1.0" ;
>        :history = "2011-09-18 14:19:37 GMT by mars2netcdf-0.92" ;
> data:
>
>  longitude = 0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15, 16.5, 18, 19.5,
>    21, 22.5, 24, 25.5, 27, 28.5, 30, 31.5, 33, 34.5, 36, 37.5, 39, 40.5,
> 42,
>    43.5, 45, 46.5, 48, 49.5, 51, 52.5, 54, 55.5, 57, 58.5, 60, 61.5, 63,
>    64.5, 66, 67.5, 69, 70.5, 72, 73.5, 75, 76.5, 78, 79.5, 81, 82.5, 84,
>    85.5, 87, 88.5, 90, 91.5, 93, 94.5, 96, 97.5, 99, 100.5, 102, 103.5,
> 105,
>    106.5, 108, 109.5, 111, 112.5, 114, 115.5, 117, 118.5, 120, 121.5, 123,
>    124.5, 126, 127.5, 129, 130.5, 132, 133.5, 135, 136.5, 138, 139.5, 141,
>    142.5, 144, 145.5, 147, 148.5, 150, 151.5, 153, 154.5, 156, 157.5, 159,
>    160.5, 162, 163.5, 165, 166.5, 168, 169.5, 171, 172.5, 174, 175.5, 177,
>    178.5, 180, 181.5, 183, 184.5, 186, 187.5, 189, 190.5, 192, 193.5, 195,
>    196.5, 198, 199.5, 201, 202.5, 204, 205.5, 207, 208.5, 210, 211.5, 213,
>    214.5, 216, 217.5, 219, 220.5, 222, 223.5, 225, 226.5, 228, 229.5, 231,
>    232.5, 234, 235.5, 237, 238.5, 240, 241.5, 243, 244.5, 246, 247.5, 249,
>    250.5, 252, 253.5, 255, 256.5, 258, 259.5, 261, 262.5, 264, 265.5, 267,
>    268.5, 270, 271.5, 273, 274.5, 276, 277.5, 279, 280.5, 282, 283.5, 285,
>    286.5, 288, 289.5, 291, 292.5, 294, 295.5, 297, 298.5, 300, 301.5, 303,
>    304.5, 306, 307.5, 309, 310.5, 312, 313.5, 315, 316.5, 318, 319.5, 321,
>    322.5, 324, 325.5, 327, 328.5, 330, 331.5, 333, 334.5, 336, 337.5, 339,
>    340.5, 342, 343.5, 345, 346.5, 348, 349.5, 351, 352.5, 354, 355.5, 357,
>    358.5 ;
>
>  latitude = 90, 88.5, 87, 85.5, 84, 82.5, 81, 79.5, 78, 76.5, 75, 73.5, 72,
>    70.5, 69, 67.5, 66, 64.5, 63, 61.5, 60, 58.5, 57, 55.5, 54, 52.5, 51,
>    49.5, 48, 46.5, 45, 43.5, 42, 40.5, 39, 37.5, 36, 34.5, 33, 31.5, 30,
>    28.5, 27, 25.5, 24, 22.5, 21, 19.5, 18, 16.5, 15, 13.5, 12, 10.5, 9,
> 7.5,
>    6, 4.5, 3, 1.5, 0, -1.5, -3, -4.5, -6, -7.5, -9, -10.5, -12, -13.5, -15,
>
>    -16.5, -18, -19.5, -21, -22.5, -24, -25.5, -27, -28.5, -30, -31.5, -33,
>    -34.5, -36, -37.5, -39, -40.5, -42, -43.5, -45, -46.5, -48, -49.5, -51,
>    -52.5, -54, -55.5, -57, -58.5, -60, -61.5, -63, -64.5, -66, -67.5, -69,
>    -70.5, -72, -73.5, -75, -76.5, -78, -79.5, -81, -82.5, -84, -85.5, -87,
>    -88.5, -90 ;
>
>  time = 780171, 780174, 780177, 780180, 780183, 780186, 780189, 780192,
>    780915, 780918, 780921, 780924, 780927, 780930, 780933, 780936, 781587,
>    781590, 781593, 781596, 781599, 781602, 781605, 781608, 782331, 782334,
>    782337, 782340, 782343, 782346, 782349, 782352, 783051, 783054, 783057,
>    783060, 783063, 783066, 783069, 783072, 783795, 783798, 783801, 783804,
>    783807, 783810, 783813, 783816, 784515, 784518, 784521, 784524, 784527,
>    784530, 784533, 784536, 785259, 785262, 785265, 785268, 785271, 785274,
>    785277, 785280, 786003, 786006, 786009, 786012, 786015, 786018, 786021,
>    786024, 786723, 786726, 786729, 786732, 786735, 786738, 786741, 786744,
>    787467, 787470, 787473, 787476, 787479, 787482, 787485, 787488, 788187,
>    788190, 788193, 788196, 788199, 788202, 788205, 788208 ;
> }*
>
> Here is the output from wgrib for the same data but downloaded in grib
> format:*
>
> wgrib -h ei_mnth_fc_sfc_1.5x1.5_19890101_19891201.grib
>
> 1:0:d=89010100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 2:58188:d=89010100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 3:116376:d=89010100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 4:174564:d=89010100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 5:232752:d=89010112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 6:290940:d=89010112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 7:349128:d=89010112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 8:407316:d=89010112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 9:465504:d=89020100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 10:523692:d=89020100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 11:581880:d=89020100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 12:640068:d=89020100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 13:698256:d=89020112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 14:756444:d=89020112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 15:814632:d=89020112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 16:872820:d=89020112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=28
>
> 17:931008:d=89030100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 18:989196:d=89030100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 19:1047384:d=89030100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 20:1105572:d=89030100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 21:1163760:d=89030112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 22:1221948:d=89030112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 23:1280136:d=89030112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 24:1338324:d=89030112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 25:1396512:d=89040100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 26:1454700:d=89040100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 27:1512888:d=89040100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 28:1571076:d=89040100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 29:1629264:d=89040112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 30:1687452:d=89040112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 31:1745640:d=89040112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 32:1803828:d=89040112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 33:1862016:d=89050100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 34:1920204:d=89050100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 35:1978392:d=89050100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 36:2036580:d=89050100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 37:2094768:d=89050112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 38:2152956:d=89050112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 39:2211144:d=89050112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 40:2269332:d=89050112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 41:2327520:d=89060100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 42:2385708:d=89060100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 43:2443896:d=89060100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 44:2502084:d=89060100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 45:2560272:d=89060112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 46:2618460:d=89060112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 47:2676648:d=89060112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 48:2734836:d=89060112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 49:2793024:d=89070100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 50:2851212:d=89070100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 51:2909400:d=89070100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 52:2967588:d=89070100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 53:3025776:d=89070112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 54:3083964:d=89070112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 55:3142152:d=89070112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 56:3200340:d=89070112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 57:3258528:d=89080100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 58:3316716:d=89080100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 59:3374904:d=89080100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 60:3433092:d=89080100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 61:3491280:d=89080112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 62:3549468:d=89080112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 63:3607656:d=89080112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 64:3665844:d=89080112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 65:3724032:d=89090100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 66:3782220:d=89090100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 67:3840408:d=89090100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 68:3898596:d=89090100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 69:3956784:d=89090112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 70:4014972:d=89090112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 71:4073160:d=89090112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 72:4131348:d=89090112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 73:4189536:d=89100100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 74:4247724:d=89100100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 75:4305912:d=89100100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 76:4364100:d=89100100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 77:4422288:d=89100112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 78:4480476:d=89100112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 79:4538664:d=89100112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 80:4596852:d=89100112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 81:4655040:d=89110100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 82:4713228:d=89110100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 83:4771416:d=89110100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 84:4829604:d=89110100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 85:4887792:d=89110112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 86:4945980:d=89110112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 87:5004168:d=89110112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 88:5062356:d=89110112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=30
>
> 89:5120544:d=89120100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 90:5178732:d=89120100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 91:5236920:d=89120100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 92:5295108:d=89120100:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 93:5353296:d=89120112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=3:P2=24:TimeU=1:sfc:3hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 94:5411484:d=89120112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=6:P2=24:TimeU=1:sfc:6hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 95:5469672:d=89120112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=9:P2=24:TimeU=1:sfc:9hr
> fcst:ave at 24hr:mon mean:NAve=31
>
> 96:5527860:d=89120112:TP:kpds5=228:kpds6=1:kpds7=0:TR=113:P1=12:P2=24:TimeU=1:sfc:12hr
> fcst:ave at 24hr:mon mean:NAve=31
>
>
>
> > Today's Topics:
> >
> >   1. Re: Box Plot in GrADS? (Jayakrishnan PR)
> >   2. Re: Convert monthly to yearly accumulated rainfall
> >      (Rafanoharana Serge Claudio)
> >   3. Invitation to connect on LinkedIn (Rajeevan K via LinkedIn)
> >   4. Re: lats4d and re (Arlindo da Silva)
> >   5. Re: Moisture flux convergence/divergence (Arlindo da Silva)
> >   6. Problem with GrADS in reading ECMWF synoptic monthly      means
> >      data (Mubashar Dogar)
> >   7. Re: Problem with GrADS in reading ECMWF synoptic monthly
> >      means data (Jennifer Adams)
> >
> >
> > ----------------------------------------------------------------------
> >
> > Message: 1
> > Date: Sat, 17 Sep 2011 10:24:57 +0530
> > From: Jayakrishnan PR <prjayakrishnan at gmail.com>
> > Subject: Re: [gradsusr] Box Plot in GrADS?
> > To: GrADS Users Forum <gradsusr at gradsusr.org>
> > Message-ID:
> >        <CA+P5ZEE1-peEObQ1nMB_c1qFa_PNXNOJZ6mq03Eqi=
> DiJzbB6A at mail.gmail.com
> > >
> > Content-Type: text/plain; charset="iso-8859-1"
> >
> > Dear Matei,
> >               I am wondering why you are sticking to Grads itself. Grads
> is
> > a software designed to plot griided data and analysis of that data. it is
> > not suitable for plotting these kind of graphs. You can choose softwares
> > such as NCL or origin for plotting these kind of graphs. No need for
> > sticking into Grads.
> > >
> > >
> > >
> >
> >
> > --
> > Sincerely
> > ***********************************************
> > Jayakrishnan.P.R
> > CSIR-Senior Research Fellow
> > Department of Atmospheric Sciences
> > Cochin University of Science and Technology (CUSAT), Cochin-682 016
> > Kerala, India.
> > Mob: 09895417565
> >
> > ***********************************************
> > -------------- next part --------------
> > An HTML attachment was scrubbed...
> > URL:
> >
> http://gradsusr.org/pipermail/gradsusr/attachments/20110917/aee4af7f/attachment-0001.html
> >
> > ------------------------------
> >
> > Message: 2
> > Date: Sat, 17 Sep 2011 15:11:20 +0700
> > From: Rafanoharana Serge Claudio <rafanoharana at gmail.com>
> > Subject: Re: [gradsusr] Convert monthly to yearly accumulated rainfall
> > To: GrADS Users Forum <gradsusr at gradsusr.org>
> > Message-ID:
> >        <CAPFxStgNLcjM=4girADmnhMXVH+S-bo6=
> hzzRQxHJrrN6-+CTw at mail.gmail.com
> > >
> > Content-Type: text/plain; charset="iso-8859-1"
> >
> > Dear Chris,
> >
> > I do not know if one can do it directly while having the 50 time steps
> but
> > what I can say is that you can process for every year (then you'll have
> 50
> > outputs), then assign time for every year, then merge using cdo all 50
> > years
> > into one single file.
> >
> > Hope this can help,
> >
> > Serge
> >
> > On Sat, Sep 17, 2011 at 3:34 AM, Alauda arvensis <a.arvensis at gmail.com
> > >wrote:
> >
> > > Dear GrADS users,
> > >
> > > My data consists of 50 years of monthly rainfall. I want to convert
> this
> > > data into yearly accumulated rainfall for every year. So I am looking
> for
> > > something like:
> > >
> > > 'pyearly = sum(pmonthly, t=1, t=12)' ... but I need it for every year,
> so
> > > that in the end I have 50 time steps.
> > >
> > > Any hints welcome! Thanks!
> > >
> > > Kind regards,
> > > Chris
> > >
> > > PS: I already tried "mon2yr.gs" from Bin Guan's page, but something
> does
> > > not appear to work.
> > >
> > > _______________________________________________
> > > gradsusr mailing list
> > > gradsusr at gradsusr.org
> > > http://gradsusr.org/mailman/listinfo/gradsusr
> > >
> > >
> >
> >
> > --
> > Serge
> > -------------- next part --------------
> > An HTML attachment was scrubbed...
> > URL:
> >
> http://gradsusr.org/pipermail/gradsusr/attachments/20110917/2b5fa831/attachment-0001.html
> >
> > ------------------------------
> >
> > Message: 3
> > Date: Sat, 17 Sep 2011 12:23:40 +0000 (UTC)
> > From: Rajeevan K via LinkedIn <member at linkedin.com>
> > Subject: [gradsusr] Invitation to connect on LinkedIn
> > To: Ning Cao <gradsusr at gradsusr.org>
> > Message-ID:
> >        <786703422.8558443.1316262220088.JavaMail.app at ela4-app0131.prod>
> > Content-Type: text/plain; charset="utf-8"
> >
> > LinkedIn
> > ------------
> >
> >
> >
> >
> >    Rajeevan K requested to add you as a connection on LinkedIn:
> >
> > ------------------------------------------
> >
> > Ning,
> >
> > I'd like to add you to my professional network on LinkedIn.
> >
> > - Rajeevan
> >
> > Accept invitation from Rajeevan K
> >
> >
> http://www.linkedin.com/e/ofpc7q-gsokjh2t-51/X_QvJ7UefcfFkLAYwdQqLHU00gfkGZ-5LN/blk/I161349014_13/1BpC5vrmRLoRZcjkkZt5YCpnlOt3RApnhMpmdzgmhxrSNBszYPclYQcj0Vd3cNdz59bT1imBhDqDB3bP8Sd3sRdPoQczgLrCBxbOYWrSlI/EML_comm_afe/?hs=false&tok=3cpy5iTqgDLAU1
> >
> > View invitation from Rajeevan K
> >
> >
> http://www.linkedin.com/e/ofpc7q-gsokjh2t-51/X_QvJ7UefcfFkLAYwdQqLHU00gfkGZ-5LN/blk/I161349014_13/3cNnPgNc3AQcP4SckALqnpPbOYWrSlI/svi/?hs=false&tok=27OH6j0pIDLAU1
> >
> >
> > --
> > (c) 2011, LinkedIn Corporation
> > -------------- next part --------------
> > An HTML attachment was scrubbed...
> > URL:
> >
> http://gradsusr.org/pipermail/gradsusr/attachments/20110917/c1848b01/attachment-0001.html
> >
> > ------------------------------
> >
> > Message: 4
> > Date: Sat, 17 Sep 2011 09:54:51 -0400
> > From: Arlindo da Silva <dasilva at alum.mit.edu>
> > Subject: Re: [gradsusr] lats4d and re
> > To: GrADS Users Forum <gradsusr at gradsusr.org>
> > Message-ID:
> >        <CALz7xZfF+=6FEJbFc_zi1t4WAPHUXwRe0RUYwVPc=
> qPiVnbuUw at mail.gmail.com
> > >
> > Content-Type: text/plain; charset="iso-8859-1"
> >
> > On Fri, Sep 16, 2011 at 5:20 PM, Coly SAR <colysar at gmail.com> wrote:
> >
> > > I have a 3D nc file with 6 variables and I want to regrid it to 0.5?
> > using
> > > lats4d.
> > > I issued this command below but the file created remains the same as
> > infile
> > > and no regrid done.
> > >
> > >
> > >
> > > >lats4d -i runet.nc -o test_05 -lon -38.5 29 -lat -10.5 25 -func
> > re(@,0.5)
> > >
> > > I am using opengrad v 2.9 and need any suggestion on how to do this
> > regrid.
> > >
> > >
> > Type "lats4d -h" and read the section on regridding. Unless you use one
> of
> > the predefined resolutions you will need to create (or point to one)
> > dimension environment file (option -de).
> >
> >   Arlindo
> >
> >
> >
> > --
> > Arlindo da Silva
> > dasilva at alum.mit.edu
> > -------------- next part --------------
> > An HTML attachment was scrubbed...
> > URL:
> >
> http://gradsusr.org/pipermail/gradsusr/attachments/20110917/a2d77033/attachment-0001.html
> >
> > ------------------------------
> >
> > Message: 5
> > Date: Sat, 17 Sep 2011 10:12:57 -0400
> > From: Arlindo da Silva <dasilva at alum.mit.edu>
> > Subject: Re: [gradsusr] Moisture flux convergence/divergence
> > To: GrADS Users Forum <gradsusr at gradsusr.org>
> > Message-ID:
> >        <
> CALz7xZf5MaHEvP1bX1Z93ysYNg5xVCGOvBdBaM5aHTkEs6+HSw at mail.gmail.com
> > >
> > Content-Type: text/plain; charset="iso-8859-1"
> >
> > 2011/9/16 Hyacinth Nnamchi <hyacinth.1 at hotmail.com>
> >
> > >  Jeff,
> > >
> > > I seems my question wasn't well framed, and so you dealt with the typo.
> I
> > > have attached two Figs showing what the calculations below will give
> and
> > > what exactly I'll like to do.
> > >
> > >
> > >From the attached plot it appears that you want to plot the divergent
> > component of the mass flux, as given by the Helmholtz decomposition:
> >
> >           http://en.wikipedia.org/wiki/Helmholtz_decomposition
> >
> > The first step is to compute the velocity potential
> >
> >   ga-> chi = fish_chi(zon,mer)
> >
> > (As Roger mentions, make sure to average in the vertical first if this is
> > what you want.) Next, the divergent component of the mass flux is related
> > to
> > the gradient of chi; see this for more information:
> >
> >  Calculating the Divergent
> > Wind<
> >
> http://opengrads.org/doc/udxt/fish/fish.html#calculating_the_divergent_wind
> > >
> >
> > Notice that you will need an opengrads build in order to use the fish
> > extension; more info here:
> >
> >
> >
> http://opengrads.org/wiki/index.php?title=Installing_the_OpenGrADS_Bundle
> >
> >  Good luck,
> >
> >   Arlindo
> >
> >
> >
> >
> >
> >
> > > Thanks,
> > >
> > > Hyacinth
> > >
> > >
> > > > Date: Thu, 15 Sep 2011 17:34:50 -0500>
> > > From: Jeffrey Duda <jdduda at iastate.edu>>
> > >  Subject: Re: [gradsusr] Moisture flux convergence/divergence
> > > > To: GrADS Users Forum <gradsusr at gradsusr.org>
> > > > Message-ID:
> > > > <CAP9LQ-VNkxcu-+ey_QkZU7f4MHf+VwJDvav=Dci3ns+x+pjG8Q at mail.gmail.com>
> > > > Content-Type: text/plain; charset="iso-8859-1"
> > >
> > > >
> > > > Set the graphics output to vector ('set gxout vector'), then 'd
> > zon;mer'
> > > > (note the semicolon instead of a comma).
> > > >
> > > > Jeff Duda
> > > >
> > > > 2011/9/15 Hyacinth Nnamchi <hyacinth.1 at hotmail.com>
> > > >
> > > > > Hello,
> > > > >
> > > > > This is not directly about GrADS but since most of address similar!
> > > > > problems, I guess someone on this forum will be able to answer my
> > > question.
> > > > >
> > > > > I understand that to calculate moisture transport, given zonal,
> > > meridional
> > > > > winds and specific humidity, can simply do:
> > > > >
> > > > > 'define zon=uwnd.1*shum.3'
> > > > > 'define mer=vwnd.2*shum.3'
> > > > > 'd zon,mer'
> > > > >
> > > > > But, I want to plot vectors indicating field of net moisture flux
> > (all
> > > arrows converging/diverging) instead of just transport.
> > > > >
> > > > > Thanks for any ideas.
> > > > >
> > > > > Hyacinth
> > > > >
> > > > >
> > > > > __
> > >
> > > _______________________________________________
> > > gradsusr mailing list
> > > gradsusr at gradsusr.org
> > > http://gradsusr.org/mailman/listinfo/gradsusr
> > >
> > >
> >
> >
> > --
> > Arlindo da Silva
> > dasilva at alum.mit.edu
> > -------------- next part --------------
> > An HTML attachment was scrubbed...
> > URL:
> >
> http://gradsusr.org/pipermail/gradsusr/attachments/20110917/f06c2109/attachment-0001.html
> >
> > ------------------------------
> >
> > Message: 6
> > Date: Sun, 18 Sep 2011 21:39:04 +0300
> > From: Mubashar Dogar <mubashardogar at gmail.com>
> > Subject: [gradsusr] Problem with GrADS in reading ECMWF synoptic
> >        monthly means data
> > To: gradsusr at gradsusr.org
> > Message-ID:
> >        <
> CAHBht237iOnGUtkYuZL6+rXEtm-KSgsti2W1anm6-BY7SkAU2Q at mail.gmail.com
> > >
> > Content-Type: text/plain; charset="iso-8859-1"
> >
> > Dear GrADS users,
> >
> > I am facing a problem with time steps of a netcdf file downloaded for
> > synoptic monthly means of ECMWF ERA-INTERIM forecast product for the year
> > 1989 (downloaded for surface total precipitation for all time steps
> > available from: http://data-portal.ecmwf.int/data/d/interim_mnth/). This
> > file is basically synoptic monthly means generated by long term average
> of
> > corresponding 3 hour in all the days of a month, giving 8 time steps in a
> > month. So instead of reading 96 values that represents to 12 months (8
> > values in each months) GrADS read all these values by considering 8 time
> > steps in a day instead in a month. I mean GrADS reads these hours in a
> > daily
> > format instead of monthly. Does GrADS not deal with synoptic monthly
> means?
> > I have grib file as well for the same data, what should be time increment
> > in
> > a ctl file to open the same grib file?
> >
> >
> > Mubashar Dogar
> > -------------- next part --------------
> > An HTML attachment was scrubbed...
> > URL:
> >
> http://gradsusr.org/pipermail/gradsusr/attachments/20110918/9724bae7/attachment-0001.html
> >
> > ------------------------------
> >
> > Message: 7
> > Date: Sun, 18 Sep 2011 15:47:24 -0400
> > From: Jennifer Adams <jma at cola.iges.org>
> > Subject: Re: [gradsusr] Problem with GrADS in reading ECMWF synoptic
> >        monthly means data
> > To: GrADS Users Forum <gradsusr at gradsusr.org>
> > Message-ID: <93628EC9-0E8F-4EE1-9D80-0147B93D7F6A at cola.iges.org>
> > Content-Type: text/plain; charset="us-ascii"
> >
> > Please send the output from ncdump -c on your netcdf file. --Jennifer
> >
> > On Sep 18, 2011, at 2:39 PM, Mubashar Dogar wrote:
> >
> > >
> > > Dear GrADS users,
> > >
> > > I am facing a problem with time steps of a netcdf file downloaded
> > > for synoptic monthly means of ECMWF ERA-INTERIM forecast product for
> > > the year 1989 (downloaded for surface total precipitation for all
> > > time steps available from:
> > http://data-portal.ecmwf.int/data/d/interim_mnth/)
> > > . This file is basically synoptic monthly means generated by long
> > > term average of corresponding 3 hour in all the days of a month,
> > > giving 8 time steps in a month. So instead of reading 96 values that
> > > represents to 12 months (8 values in each months) GrADS read all
> > > these values by considering 8 time steps in a day instead in a
> > > month. I mean GrADS reads these hours in a daily format instead of
> > > monthly. Does GrADS not deal with synoptic monthly means? I have
> > > grib file as well for the same data, what should be time increment
> > > in a ctl file to open the same grib file?
> > >
> > >
> > > Mubashar Dogar
> > >
> > >
> > > _______________________________________________
> > > gradsusr mailing list
> > > gradsusr at gradsusr.org
> > > http://gradsusr.org/mailman/listinfo/gradsusr
> >
> > --
> > Jennifer M. Adams
> > IGES/COLA
> > 4041 Powder Mill Road, Suite 302
> > Calverton, MD 20705
> > jma at cola.iges.org
> >
> >
> >
> > -------------- next part --------------
> > An HTML attachment was scrubbed...
> > URL:
> >
> http://gradsusr.org/pipermail/gradsusr/attachments/20110918/ed8613dd/attachment.html
> >
> > ------------------------------
> >
> >
> -------------- next part --------------
> An HTML attachment was scrubbed...
> URL:
> http://gradsusr.org/pipermail/gradsusr/attachments/20110919/e0a52cb4/attachment.html
>
> ------------------------------
>
> _______________________________________________
> gradsusr mailing list
> gradsusr at gradsusr.org
> http://gradsusr.org/mailman/listinfo/gradsusr
>
>
> End of gradsusr Digest, Vol 19, Issue 40
> ****************************************
>



-- 
Muhammad Mubashar Ahmad Dogar
Scientific Officer (Climatology Section),
Global Change Impact Studies Centre (GCISC),
NCP complex, Quaid-e-Azam University Campus,
Shahdra road, Islamabad, Pakistan.
Tel:  +92519230226
Mob:+923315144169
email: mubashardogar at yahoo.com
          mubashar.ahmad at gcisc.org.pk
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://gradsusr.org/pipermail/gradsusr/attachments/20110919/2fc713e7/attachment-0003.html 


More information about the gradsusr mailing list