The quickest way would be to use linear interpolation. To interpolate to 100 m, you would want to linearly interpolate between your 85 m and 420 m surface. Setup a first degree polynomial y = Ax + b, where A and b are the slope and y-intercept.<br>
<br>Slope = [var(z=420 m surface) - var(z=85 m surface)] / (420 m - 85 m)<br>Choose a point on the line, say x = 420 m surface, where y = var(z=420 m surface). So b = y-Ax = var(z=420 m surface) - Slope*420 m. That gives you the line equation. Then to plot data at 100 m, just display the equation with the value of 100 m substituted for x.<br>
<br>Let's say you want to interpolate temperature, which is marked as tmpprs in your data set. Assuming the height levels you listed are the only ones available in your data, the commands would be<br>'define slope = (tmpprs(z=2)-tmpprs(z=1))/(420-85)'<br>
'define intercept = tmpprs(z=2)-slope*420'<br>'d slope*100 + intercept'<br><br>Or you could define all of that in one line. It's your choice.<br><br>Jeff Duda<br><br><div class="gmail_quote">On Thu, Jan 24, 2013 at 2:50 AM, Kishore Babu <span dir="ltr"><<a href="mailto:kishoreragi@gmail.com" target="_blank">kishoreragi@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear users,<div><br></div><div>I have variables having height levels of 85,420,850,1670,4300,8000m.</div>
<div><br></div><div>I want to interpolate to the levels of 100,500,1000,2000,5000,8000m. </div>
<div><br></div><div>Could you please suggest some way to interpolate the variables in GrADS or other software?</div><div><br></div><div>Thank you in advance,</div><div><br></div><div>Regards,</div>
<div><br></div><div>Kishore</div></div>
<br>_______________________________________________<br>
gradsusr mailing list<br>
<a href="mailto:gradsusr@gradsusr.org">gradsusr@gradsusr.org</a><br>
<a href="http://gradsusr.org/mailman/listinfo/gradsusr" target="_blank">http://gradsusr.org/mailman/listinfo/gradsusr</a><br>
<br></blockquote></div><br><br clear="all"><br>-- <br>Jeff Duda<br>Graduate research assistant<br>University of Oklahoma School of Meteorology<br>Center for Analysis and Prediction of Storms<br>